If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2-5f-6=0
a = 1; b = -5; c = -6;
Δ = b2-4ac
Δ = -52-4·1·(-6)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-7}{2*1}=\frac{-2}{2} =-1 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+7}{2*1}=\frac{12}{2} =6 $
| 7÷2y=3 | | 9(7+2c)=11(c+14) | | X+14=5x-2=x-1 | | (x+3)^{2}+6=42 | | 5/7x+8=43 | | x+2=(-1x)+2 | | 3(x-8)^2-4=71 | | r/2=1/2=2r/5 | | 9(8-m)=8(-3-9) | | 3z+17=8z+1=3z+18 | | 7.85/d=3.14 | | -5x+14x=48+12 | | |9+6n|+6=45 | | 125^x=5^7x-2 | | 0=-4(x+6)^2-12 | | 6(x-4)+2x=8x-10 | | -7x+4+10x-8=17 | | 5x+7x+3x=180 | | 425y+91=7 | | 5x-(2x-15)=6x-(3x-18) | | 425y+9=7 | | (y+1)^2=24 | | (z+10)^2=40 | | 5m-3=34 | | f(3)=-3(-3)-2 | | y=20(.90)30 | | 3y-9=2y+8 | | -8x-40=24 | | 25x=252 | | 11x-(x+5)=-2(-5x-3 | | 0=12+3(m-3) | | 12x+x=169,x= |